์ฝ๋: def solution(brown, yellow): total = brown + yellow # a * b = total for b in range(1,total+1): if total % b == 0: # total / b = a a = total / b if a >= b: # a >= b if 2*a + 2*b == brown + 4: # 2*a + 2*b = brown + 4 return [a,b] ํ์ด: ๊ฐ๋ก๋ฅผ a, ์ธ๋ก๋ฅผ b ๋ผ๊ณ ํ๊ณ ์์ ์ธ์ฐ๊ธฐ
์ฝ๋: -- ์ฝ๋๋ฅผ ์ ๋ ฅํ์ธ์ SELECT A.PRODUCT_ID, PRODUCT_NAME, SUM(PRICE * AMOUNT) AS TOTAL_SALES FROM FOOD_PRODUCT A JOIN FOOD_ORDER B ON A.PRODUCT_ID = B.PRODUCT_ID WHERE PRODUCE_DATE LIKE '2022-05%' GROUP BY PRODUCT_ID ORDER BY TOTAL_SALES DESC, PRODUCT_ID ASC ํ์ด: 1. PRODUCT_ID๋ฅผ ํค๋ก ์กฐ์ธ 2. LIKE๋ก 5์์ธ ๊ฒ๋ค ๊ตฌํ๊ธฐ 3. GROUP BY๋ก PRODUCT_ID๋ผ๋ฆฌ ๋ฌถ์ด์ค์ผํจ!!! 4. SUM(PRICE * AMOUNT) ์ด๋งค์ถ ๊ตฌํ๊ธฐ **!
์ฝ๋: -- ์ฝ๋๋ฅผ ์ ๋ ฅํ์ธ์ SELECT BOARD_ID, WRITER_ID, TITLE, PRICE, CASE WHEN STATUS = 'DONE' THEN '๊ฑฐ๋์๋ฃ' WHEN STATUS = 'SALE' THEN 'ํ๋งค์ค' WHEN STATUS = 'RESERVED' THEN '์์ฝ์ค' END AS 'STATUS' FROM USED_GOODS_BOARD WHERE DATE_FORMAT(CREATED_DATE, '%Y-%m-%d') = '2022-10-05' ORDER BY BOARD_ID DESC ํ์ด: CASE WHEN ํ์ฉ! ***

๋ฌธ์ : ์ฝ๋: -- ์ฝ๋๋ฅผ ์ ๋ ฅํ์ธ์ SELECT ANIMAL_ID, NAME, CASE WHEN SEX_UPON_INTAKE LIKE '%Neutered%' OR SEX_UPON_INTAKE LIKE '%Spayed%' THEN 'O' ELSE 'X' END AS '์ค์ฑํ' FROM ANIMAL_INS ORDER BY ANIMAL_ID ํ์ด: CASE WHEN์ ์ฌ์ฉํ๋ฉด ๋๋ค. CASE WHEN ์กฐ๊ฑด THEN '๋ฐํ ๊ฐ' WHEN ์กฐ๊ฑด THEN '๋ฐํ ๊ฐ' ELSE 'WHEN ์กฐ๊ฑด์ ํด๋น ์๋๋ ๊ฒฝ์ฐ ๋ฐํ ๊ฐ' END SELECT ์ค๊ฐ์ ์ฌ์ฉ!

๋ฌธ์ : ์ฝ๋: SELECT ANIMAL_ID, NAME FROM ANIMAL_INS WHERE ANIMAL_TYPE ='DOG'AND NAME LIKE '%EL%' ORDER BY NAME ํ์ด: WHERE NAME = 'EL' ํ๋ฉด ???๊ฐ ์ด๋ฆ์ด ์ปฌ๋ผ๋ง ๋์จ๋ค. 'EL'์ด ํฌํจ๋์ด ์๋ ์ด๋ฆ์ ๊ฒ์ํ๋ ค๋ฉด LIKE๋ฅผ ์จ์ผ๋๋ค. NAME LIKE 'EL%' -> EL๋ก ์์ํ๋ ์ด๋ฆ ์ถ๋ ฅ NAME LIKE '%EL' -> EL๋ก ๋๋๋ ์ด๋ฆ ์ถ๋ ฅ NAME LIKE '%EL%' -> EL์ด ํฌํจ๋์ด ์๋ ์ด๋ฆ ์ถ๋ ฅ

๋ฌธ์ : ์ฝ๋: SELECT HOUR(DATETIME) AS HOUR, COUNT(*) AS COUNT FROM ANIMAL_OUTS WHERE HOUR(DATETIME) BETWEEN 9 AND 19 GROUP BY HOUR(DATETIME) ORDER BY HOUR(DATETIME) ASC ํ์ด: 1. DATETIME์ "2014-06-28 13:40:00" ์ด๋ฐ ํ์์ผ๋ก ๋์ด ์์. -> HOUR ํจ์๋ฅผ ์ฌ์ฉํ๋ฉด ๋จ. 2. WHERE ๋ก ๋ฒ์ ์ง์ -> BETWEEN ? AND ? ํ๋ฉด ๋จ. / where๊น์ง๋ as hour์ด ์ ์ฉ ์๋จ! 3. GROUP BY, ORDER BY ๋ as hour ์ ์ฉ๋จ.

๋ฌธ์ : ์ฝ๋ : import sys from collections import deque # ๋ฐฉ๋ฌธ : 1 & ๋ฐฉ๋ฌธx : 0 def DFS(V): visited_dfs[V] = 1 print(V, end= ' ') for i in range(1, N+1): if visited_dfs[i] == 0 and graph[V][i]==1: DFS(i) def BFS(V): queue = deque([V]) visited_bfs[V] = 1 while queue: V = queue.popleft() print(V, end= ' ') for i in range(1, N+1): if visited_bfs[i] == 0 and graph[V][i] == 1: queue.append(i) visited_bfs[i] = 1..

Phillip Isola 1. Introduction Image-to-Image Translation์ ์ด๋ฏธ์ง๋ฅผ ์ ๋ ฅ์ผ๋ก ๋ฐ์์ ๋ ๋ค๋ฅธ ์ด๋ฏธ์ง๋ฅผ ์ถ๋ ฅ์ผ๋ก ๋ฐํํ๋ Task๋ฅผ ๋ปํ๋ค. ๋ณธ ๋ ผ๋ฌธ์ Image-to-Image Translation์ ์ ํฉํ cGAN์ ๊ธฐ๋ฐ์ผ๋กํ๋ฉฐ ๋ค์ํ Task์์ ์ข์ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ด๋ ํ๋ ์์ํฌ pix2pix๋ฅผ ๋ค๋ฃฌ๋ค. ์๋ ์ธ์ด ๋ฒ์ญ์ด ๊ฐ๋ฅํ ๊ฒ์ฒ๋ผ ์๋ image-to-image ๋ณํ ๋ํ ์ถฉ๋ถํ ํ์ต ๋ฐ์ดํฐ๊ฐ ์ฃผ์ด์ง๋ค๋ฉด ํ ์ฅ๋ฉด์ ํํ์ ๋ค๋ฅธ ์ฅ๋ฉด์ผ๋ก ๋ณํํ๋ ์์ ์ผ๋ก ์ ์ํ ์ ์๋ค. DCGAN๊ณผ ๋ค๋ฅธ์ ์ Generator(G)์ input์ด random vector๊ฐ ์๋๋ผ condition input ๋ผ๋ ์ ์ด๋ค. ๋ณธ ๋ ผ๋ฌธ์์ ์ฐ๋ฆฌ์ ๋ชฉํ๋ ์ด๋ฌํ ๋ชจ๋ ๋ฌธ์ ์ ๋ํ..
- Total
- Today
- Yesterday
- AIRUSH
- ํ๋ก๊ทธ๋๋จธ์ค
- 2d-gs
- ๋ ผ๋ฌธ
- AIRUSH2023
- ์ฝ๋ฉ์๋ฌ
- dreambooth
- AI์ปจํผ๋ฐ์ค
- lgaimers
- gan
- ํ์ด์ฌ
- ํ ํฌ์๋ฐ
- SKTECHSUMMIT
- ๋ ผ๋ฌธ๋ฆฌ๋ทฐ
- 3d-gs
- Paper review
- ์คํ ์ด๋ธ๋ํจ์
- ํ์ด์ฌ์ฝํ
- SQL
- MYSQL
- ๋ ผ๋ฌธ์ฝ๊ธฐ
- Gaussian Splatting
- ๋๋ฆผ๋ถ์ค
- CLOVAX
- Aimers
- ์ปดํจํฐ๋น์
- gs๋ ผ๋ฌธ
- C์ธ์ด
- ์ฝ๋ฉ๊ณต๋ถ
- ์ฝํ ์ค๋น
์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
28 | 29 | 30 |