
Alec Radford & Luke Metz DCGAN : UNSUPERVISED REPRESENTATION LEARNINGWITH DEEP CONVOLUTIONALGENERATIVE ADVERSARIAL NETWORKS INTRODUCTION GANs have been known to be unstable to train, often resulting in generators that produce nonsensical outputs. CNN์ ํ์ฉํ ๋น์ง๋ํ์ต์ผ๋ก ์ง๋ํ์ต๊ณผ ๋น์ง๋ํ์ต์ ์ฐจ์ด๋ฅผ ์ค์ธ๋ค. CNN์ ํ์ฉํ์ฌ ์์ ์ ์ธ train์ ๊ฐ๋ฅํ๊ฒ ํ์ผ๋ฉฐ ์ด๋ฅผ DCGAN์ด๋ผ๊ณ ํ๋ค. ํ๋ณ๊ธฐ๋ฅผ ์ด๋ฏธ์ง ๋ถ๋ฅ๊ธฐ ์์ ์ผ๋ก ์ฌ์ฉํ์๊ณ , ๋ค๋ฅธ ๋น์ง๋ํ์ต ์๊ณ ๋ฆฌ์ฆ๋ค์ ๊ฒฝ์์ ์ธ ์ฑ๋ฅ์ ๋ณด์ฌ์ค๋ค. DCGAN์ ์ํด..

Ian Goodfellow$(.et al)$ Abstract ์ ๋์ ํ๋ก์ธ์ค๋ฅผ ํตํด ์์ฑ๋ชจ๋ธ์ ์ถ์ ํ๋ ์๋ก์ด ํ๋ ์์ํฌ๋ฅผ ์ ์ํ๋ค. ์์ฑ๋ชจ๋ธ G์ ํ๋ณ๋ชจ๋ธ D ๋๊ฐ์ง ๋ชจ๋ธ์ ๋์์ ํ๋ จํ๋ค. GAN? GAN์ ๋ ๊ฐ์ ๋ค๋ฅธ ์ ๊ฒฝ๋ง ๊ฐ์ ์ ๋์ ์ธ ๊ด๊ณ๋ก ๋๋ฆฝ(Adversarial)ํ๋ฉฐ ์๋ก์ ์ฑ๋ฅ์ ์ ์ฐจ ๊ฐ์ ํด ๋๊ฐ๋ ๊ฒ ์์ฑ ๋ชจ๋ธ G : ๋ฐ์ดํฐ์ ๋ถํฌ๋ฅผ ํ์ตํ๋ ๋ชจ๋ธ ํ๋ณ ๋ชจ๋ธ D : ์ด๋ฏธ์ง๋ฅผ ์ค์ (training data) ๋๋ ๊ฐ์ง(generated data)์ธ์ง ๋ถ๋ฅํ๋ ๋ชจ๋ธ Generator๋ ํ๋ จ ๋ฐ์ดํฐ์ ๋ถํฌ๋ฅผ ํ์ตํ์ฌ, ์์์ ๋ ธ์ด์ฆ๋ฅผ ์ ๋ ฅ์ผ๋ก ๋ฐ์ ์ ๊ฒฝ๋ง์ ์ฌ์ฉํ์ฌ ์ด๋ฏธ์ง๋ฅผ ์์ฑํจ. Introduction ๋ฅ๋ฌ๋์ ๊ฐ์ฅ ๋๋๋ฌ์ง ์ฑ๊ณต์ high-dimensional, rich sensor..
- Total
- Today
- Yesterday
- SQL
- AI์ปจํผ๋ฐ์ค
- Paper review
- dreambooth
- AIRUSH
- ํ ํฌ์๋ฐ
- Gaussian Splatting
- ์ปดํจํฐ๋น์
- MYSQL
- ์ฝ๋ฉ๊ณต๋ถ
- AIRUSH2023
- C์ธ์ด
- gan
- 2d-gs
- ํ์ด์ฌ์ฝํ
- ๋ ผ๋ฌธ์ฝ๊ธฐ
- SKTECHSUMMIT
- lgaimers
- ์ฝํ ์ค๋น
- ๋ ผ๋ฌธ
- 3d-gs
- ๋ ผ๋ฌธ๋ฆฌ๋ทฐ
- ๋๋ฆผ๋ถ์ค
- ์คํ ์ด๋ธ๋ํจ์
- ํ๋ก๊ทธ๋๋จธ์ค
- ํ์ด์ฌ
- CLOVAX
- Aimers
- ์ฝ๋ฉ์๋ฌ
- gs๋ ผ๋ฌธ
์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |